
FREE CONVECTION AND BIFURCATION 

(SVOBODNAIA KONVEKTSIIA I VETVLENIE) 
PMM Vol.31, No. 1, 196’7, pp. 101-111 

V. I. IUDOVICH 
(Rostov-on-Don) 

(Received July 9, 1966) 

The occurence of secondary stationary ilows was analyzed in p to 43 for a number of 

problems of hydrodynamics, by means of the topological method, and the application 

of the Krasnosel’skii’s bifurcation theorem [5], This method, although very general and 
requiring only a minimum of “outset information”, does not, however, afford the possi- 

bility of investigating the spectrum distribution, or determining the number of occurring 

solutions. 
The most detailed information on bifurcation can be obtained by the analytical method 

of Liapunov-Schmidt, This, not only yields qualitative results, but is also an effective 
tool for computing secondary flows in the range of problems considered here. The main 
difficulty encountered in applications of this method centers around the solution of line- 
arized problems, Genrally speaking, such problems have to be solved numerically, 

although there are cases in which quantitative results may be obtained independently of 
computations. Such instances were analyzed in [l to 41. 

It should be pointed out that a combination of topological and analytical methods 
yields the most finalized and full results : in particular, a complete picture of stability 

loss in a convection problem may be obtained in this way. It is shown in this paper that 

two secondary flows appear, immediately after the loss of stability (and the problem has 
no other nontrivial solutions). This takes place in the case in which the first eigen num- 
ber of the linearized problem is a prime number. Several examples are adduced in 
which the condition of primeness is verified, viz, convection in a horizontal layer, and 
in a vertical cylindrical vessel of considerable height, These results are set out in 
Section 2, It will be subsequently shown that both secondary flows are stable, It should 
be noted that in the case of a layer (as well as in certain other cases) the bifurcation on 
transition through subsequent critical numbers proceeds similarly, but gives rise to unsta- 
ble solutions. 

Theorem 1.1 required in the subsequent analysis will be proved in Section 1, in which 
the Liapunov-Schmidt method is applied to a case which, although special, is frequently 
met with in mathematical physics problems. A multiple spectrum is also admissible 
here, We note that this theorem has made it now possible to establish that the Taylor 
secondary flow between rotating cylinders is uniquely defined (with an accuracy of the 
order of shear along the tube axis). 

The Liapunov-Schmidt method yields the most detailed information on the nature of 
bifurcation (number of solutions, spectrum distribution, etc. ). This method requires, 
on the other hand, much more information about operators than the topological method. 
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The multiple spectrum causes particular complications. It is sometimes possible to 

reduce the problem to a simple spectrum by looking for a solution from a particular 

subspace (for example, by imposing in hydrodynamic problems certain conditions of 
evenness on the unknown functions, as was done in [l to 41 . 

There still remains unresolved the question of other solutions. It will be shown in the 

first Section how this is resolved in one case, in which the spectrum multiplicity is the 
result of the invariant character of the problem with respect to a particular group of 
transformations, It appears that, subject to certain conditions (see Theorem 1.1). all 
solutions may be obtained from a single solution by means of transformations of the 
indicated group. In fact, such a situation obtains in the case of fIow of fluid between 
two cylinders, in the problem of two-dimensional fluid surface waves, and also in the 

case of plane convection. An application of Theorem 1.1 to the problem of convection 
is given in Section 2 . 

1, A CIIC of bffurcrtion in the presence of I multiple spcc- 
trum , We shall consider in a Banach space x, Equation of the form 

x = K,,x V.1) 

Here, KA. is a completely continuous operator rn x, cancelling at zero. Let the 
Frhchet differential of operator Kp,p at point X = 0 be tiX, and ho be the charac- 
teristic number of operator A . We assume that the following conditions are satisfied. 

Condition 1. 1. Operator K;r is analytically determined in terms of X, h -2 
in the region (11~11 < p; jh -&,I < y). Equation (1.1) may now be rewritten in the 
form 

x = hAx f 5 Rkx 
k=z 

w 

where operator Rk x = Rk (x, x,..., x), k. is linear and analytically dependent on A 

.&2 = 5 pVRkmS, p=h-& (1.3) 
m=o 

Condition 1. 2. Let L s be the representation of a compact set G into the 

space of linear operators in K, i.e. L g is a continuous operator-function on G, and 
let the following conditions be satisfied 

LSl& = -&!J%r &-i = -&-t (g, ~1, RZ E G) (14 

We assume L11at Equation (1.1) is invariant with respect to- the following transforma- 

tions L, : L,K AX = K&,x (xEX; geG) (W 

Expanding Kk(pr) into a power series of parameter P , and equating coefficients 
of like powers, we obtain from (1. 5) 

L,Ax = AL,x; i$&X = R&sX, LgRk,x = RkmLgx 0.q 
It follows from the first equality of (1.6) that the characteristic subspace & of oper- 

ator A , corresponding to the characteristic number ho , is invariant with respect to 

operators La. 
Condition 1. 3, We shall call the representation of L s in xo complete, if for 

any pair of cp’, cp” E X, we can indicate such g G G that 

L&i = arp” (a>O) (1.7) 

We shall assume that the representation of L, in & is complete, 
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Condition 1. 4. Let the rank of the characteristic number be unity, and the 
multiplicity coinciding in this case with the magnitude of xo , be 7”. This signifies 

that basis cpo , Cpl , . . . , Cp,, 1 can be indicated in xo , and that there exists a system 

of eigenvectors of the conjugate operator A * : ijo , $1 , , . . , $,_I biorthogonal to {Cpkl 

It follows from (1.6) and (1.7) that such gk E G, for which C& =L,,rpo (k= 1, 
2 I..., r- 1) wilI be found. 

Condition 1. 5. We shall assume that when ? is even, then a certain subspace 

P , consisting of vectors orthogonal to $1,. . ., (Jr_1 , and containing Cpo , is invariant 

with respect to operator Kh. 
Theorem 1. 1. Let us assume that conditions 1.1 to 1.5 are fulfilled, and that 

the following inequality is true 

where vector U is defined as the solution of problem 

r-1 

a) new solutions of Equation (1.1) arise, when an increasing i passes the value of 
h 0 ; the spectrum lies to the right of point x0 : 

b) forevery x >A,, closeto A,, there is one nonzero solution with an accuracy 
of the order of transformation L g : 

x = ~wor P%o + 0 (P) 
Note . It will be seen from the subsequent analysis that, if conditions 1.2 and 1.3 

are disregarded, and the assumption made that Lo is a prime eigen number, then, with 

condition (1. 8) fulfilled, two nonzero solutions will occur 

51,s = F Y-l/&7 p%o + 0 (CL) 

Proof , Any solution x ’ of Equation (1.1) may be presented in the form 
r-t 

x’ = 
Fl ‘k’(Pk + Y’* “k = tz, q’k)’ (% $k) = ’ (k=O, l,...) r-i) (1.10) 
I:=0 

By virtue of 1.2, Equation (1.1) will have as a solution X = L,X 
I 

alongside with X’ 

for any R E G. In accordance with condition 1.3, element g can be so chosen that 
r-1 

L, (2 Qk.9k);=WO (z>O) (1.11) 
k=o 

It follows from (1.10) and (1.11) that solution X is of the form 

z=acp,+y, (y,+R)=O (k=O,i ,...( r-i) (cc>O) (1.12) 

In fact, it follows from the first equality of (1.6) that La* commutates with A” . 
Therefore, L s “$ k is the eigenvector of operator A” , consequently, by virtue of (1.10) 

(y, +a, =: &y’, $k) = (y’. Lg*$k) = o 

Thus, any solution X ’ is obtained from a solution of form (1.12) by transformation 
L s ’ The existence of a nonzero solution of Equation (1.1) follows immediately from 
the Krasnosel’skii’s theorem [5] (in the case of an even r we change over to subspace 



E, and .utilize condition 1.5) r) 

We shall now apply the Liapunov-Schmidt method to finding solutions of the form 
(1.12). Substituting (1.12) into (1.2), we obtain 

CO 
Y - hoAy -= pa / &,rpo ;_ pAvt- 2 &tarPO+y)=Q, ~=h--b (1.13) 

k=% 

Using the solvability conditions of Fredholm’s equation, we rewrite (2.13) in the 
equivalent form as follows : 

F-1 

We shall look for small solutions of Equation (1.14) in the form of a power series 
co 

Y= 
2 app$ ’ llQ’ ?I00 - 0, (Y,,, $J = 0 (k = 0,. . ‘) r - 1) (1.15) 

P, ‘I=Q 

Substituting (1.15) into (1.14), we deduce that YIO = YOl = Yll = Yoz = Yl2 = Yo3 = Q, 

and for the determination of coefficients gn0 , ,7g& , p21 we have the following 
equations 

Y20 - h&25 = P5~2~~0 

~30 - kho = PO IRzo"@or YZD) -I- %0(~51 (1.16) 

Y21 - h&21 = PO I&20 -f- ~2,c~oI 

The projection operator po is defined by Equation 
r-1 

Pox = x - L1 t2* $1 9%’ XEX (1.17) 
k=O 

We thus have 
?# = %!*a2 -t Y%G3 + 1/21azct -+* * f (1.18) 

n which terms to powers higher than three have been omitted . Substituting (1.18) into 
he second equation of (1.14). we obtain for k= 0 the bifurcation equation in the form 

(li.19) 

/ hoa + a2 (&?ocPo, $0) _t a3 ttfizo” (To, Yzo), $0) f (El,@,, 9O)l + Ilo2 (&(l:“, 900) ++,. = 0 

Here, terms to powers higher than three have again been omitted. It is clear that 

~~,,cp, 9 $0, = 0 , as otherwise Equation (1.19) would have had only one nonzero sofu- 

tion a , whereas, from considerations at the beginning of this proof, it follows that 
there must be at least two roots (one positive, and one negative). Hence, Equation 
(1.19) can be written (see (1.18) ) as 

(1,20) 

Using Newton’s diagram [S) , we deduce that Equation (1,ZO) has one (and only one) 
positive solution c1 I= T/l / k*y $2 + 0 (!I) (1.23) 

which exists for any small positive 1J- . The Theorem is proved, 
We shall illustrate the application of this theorem by a simple example. 

Example, We shall consider the problem of finding a 21 I’ -periodic solution of 
the ordinary differential equation 

_-__LL~~ = xu + 7iU' (1.22) 

Converting operator -d”/tL’Xi: by me%:i:. of Green’s operator A, we reduce Equation 

(i. 229 to rhe form of (1.2). where 
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Kj~‘L = A.4 u + Rp, Rzou = rl (d) (1.23) 

It is easy to show that operator A, is completely continuous in the Hilbert space 8, 

in which the smooth 2rT -periodic functions with a zero mean value in (-IT , rr) are 
compact, while the scalar product is determined by Formula 

Operator A is self-adjoint, rigorously positive, with eigen numbers and eigenfunctions 
which are 1 i 

li 
Ok 

1 ks, 'POk 
= - sin kr 

kJf/n ’ 
- - cos kx %k - I< 1/z (k = 1, 2,. . .) (1.25) 

Let G be a set of circle rotations. For g E c (g is the rotation by the angle g) 
we stipulate 

L,u = u (z + &I) (1.26) 

Conditions 1.1 to 1.5 are readily verified, if we assume that &’ in 1.5 is the subspace 

of odd functions from 1. The value of y is computed from (1.8). Equation (1.9) in 
this case is equivalent to the boundary value problem 

1 
- v” = kzv + go sin kx cos kx, v (5 + 2x) Ez v(x), “%k’%k (1.27) 

Using Equations (1.27) and (1. 8). we find 

1 
v = m sin 2kx. r = - (v’po; + v’%,,&& dx = 12,&4 L>O (1.28) 

--rr 

In accordance with Theorem 1.1 a new solution occurs, when an increasing h passes 
one of the values hok = k” (k = 1, 2, . ..) . It is 

uk = + m (h - hk)‘/’ sin kx + 0 (h - L,) (1.29) 

All other solutions , bifurcating from the zero solution, are obtained from (1.29) by 
means of transformations (1.26) . 

2, Applicrtion TV the problem of convection, Free convection in a 
fluid, filling a bounded space hz , is described by the system 

v Av - vp = (v,v) v + R Tg, xAT - V-VT = CV~, diw= 0 (2.1) 

We shall assume that at the (sufficiently smooth) boundary S of the domain h2 the 
following boundary conditions are satisfied : 

?I = 0, T=O (2.2) 
Problem (2.1),(2.2) was reduced in [4 and 31 to the operator equation 

v = K (v, c) = c Av + Rv (2.3) 
in the Hiiuert space fil of solenoidal vectors, vanishing at boundary 3, and appertain- 
ing to W,(1j . This aansformation is carried out in the following manner. Let v E H,, 
f (5) E &, (Q). We denote by T = Bvf the generalized solution of the boundary 
value problem xaT’ - V-VT’ = f, T’ Is = 0 (2.4~ 

The second of Equations (2.1) yields now 

v = cB, vs = CM v (2.5) 

The principle of compressed mapping makes it possible to obtain for small v E f?,, 
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the following expansion 

1111v = B,,z13, 
k-1 

MkV = B, (Y ’ v.MI;_lv) (2.6) 

Operator M acts from the ii; - into the Hz -Hilbert space of functions vanishing at 
s, with scalar product 

(T’, T”)fIz = 5 VT’ - VT”dx 
a 

We next intrcduuce operator .L , which re-establishes the generalized solution of the 
linearized Navier-Stokes equations at their right-hand sides 

vAv-C7p2f, div v -= 0, VIs ;I= 0, v =Lf (2.V 

It is now easy to proceed from (2.1) to (2.3). noting that 

h: (Y, r) = I_(\-, V)v $ ~cLl(gMv) 

dv = pL (gM1v), liv = L (v, 0) v + pc & (gM,v) (2.8) 

Operator A is completely continuous, self-adjoint, and rigorously positive [4] ; its 
spectrum consists of positive characteristic numbers, We denote its smallest character- 

istic number by Co , and shalt consider it to be a prime number. The corresponding 
eigenvector will be denoted by y =- c&p (‘=V 

Assuming 7 = CoBo C& + we obtain the confirmation that the following equations 

are fulfilled 
vA9, - V4 = P% div ‘p = 0 

xn~ = co(P3, z/s = 0, rqJs = 0 (2.10) 

We introduce yet another vector \v E II,, and function 8 E H, as the solution of. 

sys tern 
vaw - VP == (% VI9 i- P&G Q$ = c,w, + rp*F’I: 

div w =I= 0, w/s = 03 H js I= 0, w-h (2.11) 

Lemma 2.1. Problem (2.1) is solvable and has a unique solution. 
Proof . We proceed from (2.11) to the operator equation in &, . We have 

0 = cbBOwa + B,, (y*Vr) L= c0 (M,w + Mc,,y), w = coAw + L (cplTJ)rp, w _j_cp (2.12) 

Ef the second of Equations (2.12) has a unique solution, then function 8 is determined 

by the first equation. From the results of [7, 8 and 41 it follows that w , 8 are as 

smooth as desired in R , provided that boundary s is sufficiently smooth. 
There remains, thus, to verify the solvability condition of the equation defining w # 

i. e. the orthogona~i~ of this equation free member to the eigenvector cp. 

We have 

(L (0. W P, cp)rr, = - s 
611 

n%v)?.?dz=-; ~[(T,~)?‘+~J+&z=~ (2.13) 
51 

The Lemma is proved. 
We shall now calculate the value of y , defined by (1. 8). In view of the self-adjoint- 

ness of operator A , we have to assume that in (1. 8) qa = ‘p. = cp. We assume that 

u = Rzr, (w, y> + &oCf (2.14) 

With the aid of (‘2.8) we obtain (2.15) 

u = L I(\\r,yq cp i- (rp* V) w 1 -I- PC& Ig& @ * v%% “+ cp- U&w, + cp * vJfzrpr1 
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In accordance with (1.8) , (2.14) and (2.15) we have 

Here, and in the subsequent analysis, we shall use the following equalities readily 

deduced by integration by parts by taking advantage of the solenoidal properties of vec- 

s q- VTdx=O 

Making use of the self-adjoint& of operator Bo , and of Equations (2,10),(2.12) 
and (2.17), we now reduce (2.16) to 

r_-+ S 
6-a 

w.(Ip,V)Ipdx--oSO~.V~dx 

i2 

(2.18) 

Rnally, the substitu~o~ in (2.18) for (tp, vfqp, cp-vZ end x of their expressions from 

(2. ll), followed by integration by parts, yields 

Lemma 2‘2, Let v=H,, T E H,. Then, inequality 

(2.19) 

(2.20) 

is valid, The equality is obtained only under condition 

v = acp, (r = c&z, a = const (2.21) 

Here rp, Z is the eigensolution of problem (2.10) . 

Proof l According to the classical variational principle, equivalent to the first 
boundary value problem of Poisson’s equation, functional J{v , ?) with fixed Y E Hz, 
reaches its minimum, when T is the solution of the following boundary value problem : 

x AX = cot+,, T IS = 0 (2.22) 

or, in other words, at 2 = coBo V3 . In this way, the inequality 

2 (71, X) > J (v, @,%f = Y [I v&F&’ - f&xc0 [/ B& jiEfs2 (2.23) 

is satisfied. 

However, for the smallest characteristic number co of operator A in (2.9) the vari- 
ational principle (see [4] ) 

(2.24) 

is valid. Its maximum is obtained only at v = a cp . It follows from (2,23) and (2.24) 
that the minimum value of functional J(v , T) is equal to zero, and is reached at 
v = acp, X = coBov, = UT. The Lemma is proved. 

Since y = s(W. 8 j/V, it follows directly from Lemma 2.2 that y 2 0 . We shall 

prove that y is rigorously positive. As according to definition (2.11) w 1 cp, it 
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would follow from the equaliq w = cup that CI = 0 , and consequently w = 0, 8 = 0. 

The&from (2,11) we have the 1-ollawing equalities : 

(2.25) 

Lemma 2.3. Let 9, ‘r be a solution of system (2, lo), and Iec the second of 

Equations (2.25) be fulfilled by it, Then, (p = 0, z = 0. 
Proof* By virtue of (2,25) we have 

o= 
s 

ss$,V%-&===-- qgds 

Q I 

(2.26) 

Multiplying now the first and ihe third equations of system (2,10), respectively, bv 
9 and 7 , and integrating over the domain 62 using (2.26), we obtain 

Thus, (o= 0, 7 = 0. The Lemma is proved, 

It follows from Lemma 2.3 that, as shown by the preceding analysis, y > 0 . Using 

the Note to Theorem 1.1, we derive the following theorem. 

Theorem 2.1 , Let the smallest eigen number co of the linearized problem 
(2.10) be a prime number. Then, for c > co and sufficiently close to % 9 there 

exist two nonzero solutions of the operator equation (2,3), or (2,l) (2.28) 

(c - co) j COT p + 0 (c - CiJ, T=T J+- 6) J COY ‘t + 0 k - coo) 

where the positive constant y is defined by (2.1 S), or (2.19) (*) . 
Problem (2.1) has for any C s co a unique solution v = 0 , y= 0 , while for C > CO 

or cbse co C$j I it has exactly tnree: one zero soIution and a pair of solutions (2.28). The 
whole of the interval (Co 1 01) , where ~1 1s me second eigen nnmaer, appertains to 

the spectrum of Equation (2,3). 
Proof l Only the last statement of this Theorem requires justification. We difide 

the proof into several Lemmas. 
Lemma 2.4, All solutions of Equatiou (2.3) are contained within a sphere of space 

& of radius m which depends only on domain n and parameters of (2.1) , 
Proof . For any v E H,, q E Ha cne following inequalities of the kind of the 

Sobolev composition tneorem are valid : 

We shall determine function cp(X) , which is twice continuously differentiable in fl 

and such that *is = CX~. It can be further assumed that the following inequality is satis- 

fied : It % IlLI d 8 (2.30) 

where 6 is arbitrarily smalt It is easv co present function $ in an explicit form. assum- 
ing that within the boundary scrip it is a polynomial. with respect to p(x), char is. of the 
distance of point X from boundary 3, and that outside of the boundary strip we have 

JI=O, We make the following substitution in Equations (2.1) : 

T=To+@--c=, (2.31) 

*) The possibility .of the existence of a pair pf secondary convective flows at supercriti- 
cal values of temperature gradient was indicated. in [9] , 
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Function To satisfies conditions 

XAT” -v*vr, = -_xA$ -/- v*V$, ToI< = 0 (2.32) 

Multiplying (2.32) by r, and integrating over il , we obtain 
* ‘1 

x II To II>&’ = - x 
5 

v11, ’ VJTodx - q3v * y7 T,nx (2.33) 
n h 

Using Htfider’s inequality and the composition Theorem (X29), we derive from (2.33) 

x ii zrr, II& < x II O? il& + m4 /I 9 III,* * II v llHt (2.34) 

We now multiply the first of Equations (2.1) by v and integrate over 2. We obtain 

With the aid of (2.29) we derive from (2.35) 

v II v ll111 < /km42 II To 11~~ + km II ‘4’ 111,~ (2.36) 

The required estimate now easily follows from (2,30), (2, 35) and (2.3G). if 
a = xv/ 2j3gm4s is assumed. IF is of the form 

II v JI& G F (mc” ti og j/L, + mz II 9 iI&) = 172 (2.37) 

The Lemma is proved, 
Lemma 2.5 . Problem (2. l), (2.3) has a zero solution only when c 1; co. 

Proof . Since the case of c < co had been cansidered in [9 and 41. we shall 
assume that c = co . Multiplying the first of Equations (2, 1) by v and the second by 

8171i”/C, s integrating over R , and adding, we obtain 

J (v, T) = 0 (2.38) 

In accordance with Lemma 2.2, it follows from (2.38) that v = ix9, T= Cr,T 

(a = const ) . But then relationships (2.25) (in which a new function is substituted for 
p ) must be fulfilled .’ And this, in accordance with Lemma 2.3. means that a, = 0 e 
The Lemma is proved. 

It follows from the general theory of bifurcation of operator equation solutions [S] , 
that there exist such numbers j..lo , M, that for IQ -Co 1 c v. Equation (2.3) has 
no solutions in sphere II v II K G mo other than zero and the one given by (2.28). 
We innoduce notations as follows: 

(2.39) 

Since c = Cg I Equation (2.3) has no nonzero solutions, and operator K is complerely 
continuous, then 6, > 0 l Therefore, if 

0 < C - cg < 6, / 6, (2.40) 
Equation (2.3) cannot have Amy solutions outside sphere 11 v 11~~ < m, . 

Indeed, in accordance with Lemma 2.4 there are no solutions. outside the sphere 

11 v jl H, < m,, and there are none within layer m, < 1 v 11 H, \i ml by virtue of 
the simple estimate 
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Hence, with condition (2.40) fulfilled, all solutions of Equation (2.3) are contained 

within sphere 1 V 1 II, < TtZ,, and there are exactly three of these in this sphere, 
Finally, it follows from Lemma 2.4 that the rotation of the vector fieId v -K( v , C> 
on large spheres is + 1 _ As ihe zero solution index for co < 0 < ~1 is equal to - 1 , 
there must exist nonzero solutions (see [.?I and 13 ) . Theorem 2,l has been fully proved. 

Example 1. Convection in a vertical cylinder, We shall indicate 
here, without detailed substantiation, a case in which the spectral problem (2.10) may 
be solved by the asymptotic method. Let space fl be a cylinder with a vertical axis 
and normal cross section IPI, We shall consider the case in which the cylinder height 
h is considerable. 

We substitute in (2.10) variables z = ?&(; /d , where d is the diameter of section U, 
We shall look for a solution of system (2. lo), corresponding to the nth eigen number 

cn in the form of a power series of the small parameter (*) E = d/h. 
a7 m m Cc 

(2‘.42) 

Substituting (2.42) into (2. lo), we readily deduce that 

CpOl = r%oz = 0, Qa = Qo ( j) = a< + con& Ipo3 = 20 (%r GA), ro = Q(Q, x2) 

and obtain for the determination of Cllo the following spectral problem : 

The last of conditions (2.43) implies that the flux velocity through the cross section 

W is zero, which is the consequence of no-slip condition at the boundary 3: so is the 
boundary of section W ; G5 is an unknown constant. 

We can obtain an explicit solution of problem f2,43) for a number of cases (for exam- 
ple when Cu is a circle). We shall consider in greater detail the two-dimensional prob- 
lem of convection in a rectangle, In this case w = 1~ (5), z. = To (2), 1: = $1, and 
problem (2.43) becomes (d = 2) 1 

vwv = a -I- pgto, pi)" = cnow, w=t'= 0 (z=Fi): 
s 

w(r)dx= 0 (2.44) 
-1 

Solutions of problem (2.44) are either even, or odd. Even solutions are of the form 

w (x) = cos~coshpx --ashp COSp I (2.45) 

Function To is determined from the first of Equations (2.44), constant a by condi- 
tion that To (1) = 0 ~ and the corresponding eigenvalue is found from Equation 

ta$ =WP, c = mvp4 i Bs, Pi0 (2.46) 

For the odd solutions we have 
a = 0, w = @gsinpx, t = -vp%inpx, p = kn (k = i, 2, . ..) (2.47) 

“) Expansion (2.42) is valid at some distance from the cylinder bottom 5 = 0.1, where 
boundary layer phenomena occur, It is important to note, that cno is determined 
independently of the construction of boundary value solutions , 
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It follows from (2.45) to (2.47) that all eigen numbers c,, are prime numbers. Indeed, 

Equation (2. 46) has a single root within each segment (hut (Zk+ 1) n/2) (k = 1, 2,. . $ 
and no other roots whatsoever. In particular, its smallest root is p1 = 3. 9264. But, 

Cn --‘Con when 6 -0 (we stress the uneven convergence with respect to ?2) . Therefore, 
all of the first eigen numbers ~0 , Cl v..., ck (32 is any arbitrary given number) are 

prime numbers, provided that 6 is sufficiently small. 
Hence, Theorem 2.1 is applicable to problems of convection in a vertical rectangular 

vessel of a height considerably greater than its width. 

Note. A similar result is also easily obtained in the case of a cylinder of circular 

cross section (relevant computations were carried out in DO], p. 50). The first.eigen 

number of problem (2.44) is probably always a prime number. Subsequent eigen num- 

bers may, however, be multiple numbers, as was shown on the example of a rectangular 

w. Multiple eigen numbers occur, however, only rarely, as in the periodic problem 
considered in [2 and 31, and only with special dimensional relationships. 

Example 2. Two-dimensional convection in a horizontal chan- 
nel. We shall consider the two-dimensional problem (2.1) in a strip defined by 
0 5 2 5 k We assume that velocity v is periodic with respect to X = X1 , with 

period 2rT/Cro , and that the flux velocity through the cross section is zero. As was 

shown in [3], there exist for all values of Al, double eigenvalues of the relevant linear- 

ized problem (2.10). with the exception of a certain denumerable set, to which corre- 

spond the following eigenvalues 

zr (2, Z) = n (2) cosuZ, t2 (2, z) = n (z) sin az, ‘pi = L @zi g) (i = 1, 2) (2.48) 

The problem is invariant with respect to shear along the X-axis . We introduce oper- 

ators L, and L, 

zg = Lgz (x, z) = z (Z + g, z), 8g = cp (z + g* 2) = Lg cp (2.49) 

For functions 7 and vectors Cp periodic with respect to X , parameter g may be 

considered as an element of set G of circle rotations. Conditions 1.1 to 1. 5 of Theorem 
1.1 are evidently satisfied. The validity of condition (1, 8) follows from Theorem 2.1, 

Hence, a two-dimensional convection in a channel is uniquely defined by a period 

2r/CKo (with an accuracy of the order of shear along the x-axis) for all CZ, , except 
of the case of a denumerable set 

Example 3. Cellular convection in a layer. We shall now consider 

the problem of a twofold periodic, or hexagonal convection in a horizontal layer of 

fluid heated from below [3]. Using Theorem 2.1 in conditions similar to those considered 

in [3], we find that when the temperature gradient passes through the first critical value, 
a pair of solutions occurs. We would remind that we are considering here flows which 
satisfy conditions of periodicity (or hexagonality), as well as certain supplementary 
conditions as regards evenness. We note that it is easy to show on this example that the 
bifurcation proceeds in an analogous manner, not only for the first eigenvalues, but also 
for all subsequent eigenvalues. However, in such cases unstable solutions occur. 

It may be further pointed out that here secondary flows differ insignificantly ; they 
are obtained one from another by shifting in plane ‘X1X2. 
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